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Flexural modes of graphene resonators derived from the reactive empirical bond-order potential
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Flexural modes play an important role in mechanical, thermal, and electronic properties of two-dimensional
materials. Graphene nanoelectromechanical systems have been found in wide applications and have attracted
huge attention recently, where the molecular dynamics (MD) simulation has been an essential route for the
investigation of the mechanical responses of the system. In this paper, based on the expressions and parameters
of the reactive empirical bond-order potential for the carbon-carbon atomic interactions implemented in Large-
scale Atomic/Molecular Massively Parallel Simulator, the linearized part of the force for each atom along the z
direction has been obtained, yielding the stiffness matrix of the graphene lattice. By diagonalizing the stiffness
matrix, the flexural modes and their corresponding frequencies can be obtained. The results have been validated
with MD simulations in circular and square graphene resonators with different sizes. Since the stiffness matrix for
graphene resonators with arbitrary shapes can be obtained readily from our results, we expect broad applications
where eigenfrequencies and flexural modes are needed in the analysis for the nanoscale resonators.

DOI: 10.1103/PhysRevB.101.195409

I. INTRODUCTION

Graphene is a monolayer of carbon atoms tightly packed
in a two-dimensional (2D) honeycomb lattice that has been
extensively investigated [1–13] since its discovery in 2004
[1,2]. Due to its peculiar mechanical and electronic properties
[6–9], graphene has been considered as an excellent candidate
for the nanoelectromechanical (NEM) resonators [14–18].
The graphene resonators are made from suspended single-
or multilayered graphene sheets, and can be actuated either
optically or electrically [19]. The advantages of the nanometer
scale graphene resonators are unambiguous, e.g., extremely
small size, low power consumption, and ultrafast speed, which
leads to broad applications such as ultrasensitive sensors
[20–22], Berry phase switches [23], and so on. Recently,
ultrasmall accelerometers were fabricated with suspended
double-layer graphene ribbons with attached silicon proof
mass, whose size is at least two orders of magnitude smaller
than the conventional state-of-the-art silicon ones [24,25].

For 2D materials, the surface-to-volume ratio is much
larger than that for bulk materials, which is also the case
for the ratio of the number of surface phonon modes to the
total number of all the phonon modes. For one-atom-thick 2D
material, the surface phonon modes are the only choice as all
the atoms are immersed in the surface [26]. In this sense, the
out-of-plane flexural modes, belonging to the surface phonon
modes, play an important role in the mechanical [27], thermal
[28–31], and electronic properties [32] of the graphene NEM
resonators, as the out-of-plane motion is their most dominant
dynamics [19,27–29,32]. In fact, the nonlinear interactions
between flexural modes is a fundamental intrinsic dissipation

*huangl@lzu.edu.cn

mechanism, and sets the upper limit of the quality factor
(Q factor), which is one of the most important parameters
for NEM resonators [27]. The flexural phonon modes also
make a dominant contribution to the thermal conductivity of
graphene, which has been confirmed by recent experiments
and numerical simulations [28,29]. In addition, due to the
out-of-plane deformation and the pseudomagnetic field effect,
the strained nanobubbles in graphene sheet can be exploited to
confine the electrons, and affect the charge transport behaviors
in the NEM resonators [32–34].

The flexural modes and other mechanical properties of
graphene resonators have been investigated with different
methods, such as continuum plate theory [35–37], lattice
structure method [38,39], and molecular mechanics method
[40,41]. For the method of continuum plate theory, the
graphene sheet is modeled as a 2D plate, and the dynamics
of the plate is described by a partial differential equation,
whose parameters are obtained directly from the experimental
results or calculated from the empirical potentials of graphene.
Comparing with molecular dynamics (MD) simulation, this
method needs less computational resources and is suitable for
large systems [35–37]. For the lattice structure method, the
carbon atoms are regarded as nodes with concentrated atomic
mass, linked by covalent bonds which are modeled as an
equivalent structural beams with axial, bending, and torsional
capability [38,39]. The elastic parameters of the beams can
be calculated with the Odegard approach [42]. The results
given by these two methods are in good agreement with each
other [38]. The molecular mechanics method is also widely
used in the investigation of the graphene resonators. In 2010,
Sadeghi et al. introduced a hybrid atomistic-structural element
method in the shape of a hexagonal lattice consisting of six
neighbors for each carbon atom, whose equations of motion
are derived using Hamilton’s principle [40]. A similar method,
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the atomistic finite element method, has also been proposed
in the investigation of mechanical properties of 2D materials,
where the carbon-carbon bond was approximated with shear
bending and axial stretching beam, and the parameters of the
beam were derived from an empirical potential. By using
this method, the nonlinear frequency response of a single-
layered graphene sheet was computed by the commercial
finite element code ANSYS [41].

Advances in fabrication techniques enable the production
of the nanodevice with a few thousand atoms. For exam-
ple, a mass sensing experiment with a resolution of 1.7 yg
(1 yg = 10−24 g) has been reported with a carbon nanotube of
length ∼150 nm, which contains only ∼30 thousand carbon
atoms in total [43]. Undoubtedly, the MD method is capable
to investigate the mechanical properties of such devices with
the same parameters and environment as in the experiments,
where the empirical potential is the core in the MD simula-
tions. The reactive empirical bond-order (REBO) potential has
been widely used in the numerical simulations of graphene
resonators as it can give an accurate description for the bond-
bond interaction, bond breaking, and bond reforming [44–46].
In fact, many MD simulations were performed with the REBO
potential in Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS), which has been a very popular setup
in the literature [47–49]. Therefore, it is important to obtain
the flexural modes of graphene nanoresonators employing the
REBO potential for the carbon-carbon atomic interactions
based on the expression and parameters implemented in the
LAMMPS.

In this work, the theory of small oscillations (TSOs) has
been used to derive the flexural modes directly from REBO
potentials [50]. We treat the carbon atoms as mass points
which move in the force field given by the REBO potential.
The simplified expression of the potential is given in Sec. II.
Note that this expression is the same as the original one
as some functions are constants under the small oscillation
assumption, i.e., when the distance between adjacent carbon
atoms is less than 1.7 Å. The linear part of the force along
the z direction is derived from this simplified expression,
which implies that the fourth-nearest neighbor must be taken
into account. Then the stiffness matrix will be derived in
Sec. III with the expression of the force and the neighbor
list of the graphene sheet, where the flexural modes and their
corresponding frequencies are given by the eigenvectors and
eigenvalues of the stiffness matrix, respectively. In Sec. IV,
it is shown that these results match with the MD simulation
very well, and also agree with the prediction of Kirchhoff’s
plate theory. Finally, a short summary and discussion is given
in Sec. V. It should be stressed that although the flexural
modes can be obtained from other methods, our approach can
be more accurate and in the meantime can obtain the fun-
damental frequencies and the corresponding flexural modes
for large systems that are comparable to the state-of-the-art
experiments. Furthermore, our results of the expression of the
stiffness matrix are general and can be used to the graphene
resonators with arbitrary geometry, and the method in deriving
the expression of the stiffness matrix can also be expanded
to deal with other 2D materials taking into account of their
specific empirical potentials.

TABLE I. The parameter values in Eq. (2).

Parameter CC CH HH

Qi j (Å) 0.313 460 0.340 776 0.370 471

αi j (Å−1) 4.746 5391 4.102 549 8 3.536 298 6

Ai j (eV) 10 953.544 149.940 99 32.817 356

B(1)
i j (eV) 12 388.792 32.355 187 29.632 593

B(2)
i j (eV) 17.567 065

B(3)
i j (eV) 30.714 932

β
(1)
i j (Å−1) 4.720 452 3 1.434 458 1 1.715 892 2

β
(2)
i j (Å−1) 1.433 213 2

β
(3)
i j (Å−1) 1.382 691 3

II. REBO POTENTIAL

Without external field, the graphene sheet is a conservative
system, whose potential energy is a function of position
only. At low temperature, the carbon atoms oscillate about
the equilibrium configuration, which is one of the stable
equilibrium positions. For such a system, the dynamics is
completely determined by the potential energy after the initial
condition is specified. When the total energy or the vibration
amplitude is small, it can be described effectively by the
TSO. In the following, we shall first briefly recall the REBO
potential, which is an energy function for the solid carbon
and hydrocarbon molecules that is based on an empirical bond
order formalism [44–46]

EREBO = 1

2

∑
i

∑
j �=i

[
V R

i j + bi jV
A

i j

]
, (1)

where

V R
i j = wi j (ri j )

[
1 + Qi j

ri j

]
Ai je

−αi j ri j ,

V A
i j = −wi j (ri j )

3∑
n=1

B(n)
i j e−β

(n)
i j ri j ,

(2)

and

bi j = 1
2

[
pσπ

i j + pσπ
ji

] + π rc
i j + πdh

i j . (3)

V R
i j and V A

i j are repulsive and attractive pairwise potentials
between atom i and j, and bi j is the bond order term. The
parameter values in Eq. (2) are given in Table I.

The bi js are roughly equivalent to the usual chemical
concept of the bond order, which takes into account of a
variety of chemical effects that affect the strength of the
covalent bonding interaction, such as coordination numbers,
bond angles, and dihedral angles. The expressions of the terms
that contribute to bi j are given by

pσπ
i j =

[
1 +

∑
k �=i, j

wik (rik )gi(cos θ jik )eλ
jik

+ Pi j
(
NC

i j , NH
i j

)]−1/2

(4)
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FIG. 1. (a) The bond angles which are used as the variables in
angle penalty function gi(cos θ jik ). (b), (c) The definition of torsion
angles. There are two kinds of torsion angles: (b) atom k and atom l
are on the different sides of the bond ri j ; (c) atom k and atom l are
on the same side of the bond ri j .

and

πdh
i j = Ti j

(
Ni j, Nji, Nconj

i j

) ∑
k �=i, j

∑
l �=i, j

(1 − cos2 ωki jl )

×w′
ik (rik )w′

jl (r jl )	[sin(θ jik ) − smin]

×	[sin(θi jl ) − smin], (5)

where the summations indices k and l are indicated in Fig. 1.
The term π rc

i j is a three-dimensional cubic spline in the

variables (Ni j, Nji, Nconj
i j ), which describes the contributions

to the bond order from radical and conjugation effects. In
Eqs. (1)–(5), wi j (ri j ) and w′

i j (ri j ) are bond weight terms,
which can give a good description for the smooth transition
from bonded to nonbonded interaction between atoms i and j
[46], gi(x) is the angle penalty function, Ni j, Nji, and Nconj

i j are

the coordination numbers, Pi j (NC
i j , NH

i j ), π rc
i j (Ni j, Nji, Nconj

i j ),

and Ti j (Ni j, Nji, Nconj
i j ) are the functions of the coordination

numbers, and 	(x) is the Heaviside step function, i.e., 	(x) =
1 for x > 0, and 	(x) = 0 otherwise. It should be noted that
there are some discrepancies among different versions of the
potential [44–46]. In order to compare the results given by
the TSO with that of the MD simulations, the expressions
and parameters implemented in the 16 Mar 2018 version of
LAMMPS are chosen in this work.

On the hypothesis of small oscillations, the carbon atoms in
the graphene sheet undergo infinitesimal displacements with
respect to their equilibrium positions. Under such a condition,
some functions in the REBO potential are constants: (a) the
bond weight terms wi j (ri j ) and w′

i j (ri j ) are always 1 when

the bond length between adjacent atoms is smaller than 1.7 Å
[46] (the equilibrium bond length is 1.397 Å for graphene);
(b) the Heaviside step function 	(x) in Eq. (5) is 1 when
the bond angles are in the range of (5.7392◦, 174.2608◦) (the
equilibrium bond angle is 120◦); (c) the coordination numbers
NC

i j , NH
i j , Ni j , Nji, Nconj

i j are 2, 0, 2, 2, 9, respectively, and
keep constant during the MD simulations, which results in that
the values of the functions Pi j (NC

i j , NH
i j ), π rc

i j (Ni j, Nji, Nconj
i j ),

Ti j (Ni j, Nji, Nconj
i j ) are also constants (Table II). Besides that,

the eλ jik term is used for improving the potential-energy sur-
face for abstraction of hydrogen atoms from hydrocarbons.
As a result, the value of eλ jik is 1 for the pure graphene sheet
which only contains carbon atoms [45,46].

TABLE II. The values of functions of the coordination numbers.

Function Value

PCC (2, 0) −0.027 603
π rc

CC (2, 2, 9) 0
TCC (2, 2, 9) −0.004 048

The angle penalty function gi(cos θ jik ) is a fifth-order
piecewise spline, which switches smoothly between a form
g(1)

C that is appropriate for covalent compounds with low
coordination numbers and another form g(2)

C which is suitable
for highly coordinated bulk materials,

gC (cos θ jik ) = g(1)
C (cos θ jik ) + S′[tN (Ni j )]

×[
g(2)

C (cos θ jik ) − g(1)
C (cos θ jik )

]
. (6)

For the graphene sheet which vibrates around the equi-
librium position, the value of S′[tN (Ni j )] is one and the
gC (cos θ jik ) is equal to g(2)

C (cos θ jik ). The interpolation points
for g(2)

C (cos θ jik ) for graphene sheets are listed in Table III.
In short, based on the hypothesis of small oscillations, the

REBO potential for the graphene sheet can be written as

EREBO = 1

2

∑
i

∑
j∈i’s NN

[
V R

i j + bi jV
A

i j

]
, (7)

where “NN” represents nearest neighbor, and

V R
i j =

[
1 + Qi j

ri j

]
Ai je

−αi j ri j ,

V A
i j = −

3∑
n=1

B(n)
i j e−β

(n)
i j ri j , (8)

bi j = 1

2

[
pσπ

i j + pσπ
ji

] + πdh
i j

= 1

2

⎡
⎣0.972 397 +

∑
k �=i, j

gi(cos θ jik )

⎤
⎦

−1/2

+ 1

2

⎡
⎣0.972 397 +

∑
l �=i, j

gi(cos θi jl )

⎤
⎦

−1/2

− 0.004 048
∑
k �=i, j

∑
l �=i, j

sin2 ωki jl . (9)

TABLE III. Interpolation points for the quintic spline g(2)
C (cos θ jik ).

cos θ gi ∂gi/∂ (cos θ ) ∂2gi/∂ (cos θ )2

−1 −0.010 000 0.104 000 0.000 000
− 2

3 0.028 207 0.131 443 0.140 229
− 1

2 0.052 804 0.170 000 0.370 000
− 1

3 0.097 321 0.400 000 1.980 00
1 8.000 000 20.2436 43.9336
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Note that this reduced form of the REBO potential is the same
as the original one given by Eqs. (1)–(5) when the bond length
and bond angle undulate around the equilibrium value.

III. STIFFNESS MATRIX

The core step of the TSO is to construct the stiffness matrix
V [50]. Here we consider a graphene sheet which contains N
carbon atoms with fixed boundary condition. To address the
effect of flexural modes, we only consider the out-of-plane
(z-direction) motion, which, according to the TSO, can be
described as the superposition of the flexural modes when the
deviation of the system from the stable equilibrium condition
is small enough. In this case, the REBO potential can be
expanded around the equilibrium position

EREBO(z) = E0 +
∑

i

∂EREBO

∂zi

∣∣∣∣
z=0

zi

+ 1

2

∑
i, j

∂2EREBO

∂zi∂z j

∣∣∣∣
z=0

ziz j + · · · , (10)

where z = [z1, . . . , zN ] are the displacements of the carbon
atoms from their equilibrium positions in the z direction, and
E0 is the potential energy of the equilibrium position. The
coefficients of the second term in the series, e.g., ∂EREBO/∂zi,
vanish automatically as z = 0 gives the equilibrium position.
The coefficients of the quadratic term give exactly the stiffness
matrix V = [Vi j]N×N , where

Vi j = −∂2EREBO

∂zi∂z j
= ∂Fzi/∂z j, (11)

and Fzi = −∂EREBO/∂zi is the force acting on the ith atom due
to the REBO potential.

Suppose that Ei j = V R
i j + bi jV A

i j is the bond energy be-
tween atom i and j, the terms which contain zi in Eq. (7) can
be written as

Ei =
∑

j

Ei j +
∑

j,p

E j p, (12)

where the summations over j and p are indicated in Fig. 2. In
this sense, we have

Fzi = −∂Ei

∂zi

= −
∑

j

[
∂V R

i j

∂ri j
+ bi j

∂V A
i j

∂ri j

]
∂ri j

∂zi

−
∑

j

⎡
⎣V A

i j

∂bi j

∂zi
+

∑
p∈ j’s NN

V A
j p

∂b j p

∂zi

⎤
⎦

= F RA
zi

+ F b
zi
, (13)

where F RA
zi

and F b
zi

are the forces induced by the variation of
bond length and bond order, respectively.

F RA
zi

is derived from the terms of repulsive and attractive
pairwise potentials between atom i and atom j by assum-
ing that all the bond angles and torsion angles in graphene
are at the equilibrium values, whose expression can be ex-
panded into Taylor series around the equilibrium distance

r0 = 1.397 68 Å between two neighboring atoms:

F RA
zi

=
∑

j∈i’s NN

[
a2

r2
0

(z j − zi )
3 + 3a3

4r3
0

(z j − zi)
5 + · · ·

]
. (14)

It is clear that the force F RA
zi

is nonlinear and can be neglected
in the small displacement situation. The detailed derivation
can be found in Sec. 1 of the Appendix.

Substituting Eq. (9) into Eq. (13), we have

F b
zi

= −
∑

j

{
V A

i j

[
1

2

(
∂ pσπ

i j

∂zi
+ ∂ pσπ

ji

∂zi

)
+ ∂πdh

i j

∂zi

]

+
∑

p∈ j’s NN

V A
j p

[
1

2

(
∂ pσπ

j p

∂zi
+ ∂ pσπ

p j

∂zi

)
+ ∂πdh

j p

∂zi

]}
, (15)

where
∂ pσπ

i j

∂zi
� −0.075 94

r2
0

∑
k

(
3zi − 3

2
z j − 3

2
zk

)
,

∂ pσπ
ji

∂zi
� −0.075 94

r2
0

∑
l

(
1

2
zi − 3

2
z j + zl

)
,

∂ pσπ
j p

∂zi
� −0.075 94

r2
0

(
1

2
zi + zp − 3

2
z j

)
,

∂ pσπ
p j

∂zi
= 0,

∂πdh
i j

∂zi
� −0.021 589

r2
0

(
3zi − z j −

∑
k

zk

)
,

∂πdh
j p

∂zi
� 0.005 397

r2
0

(6z j − 2zp − 4zi ), (16)

and the summations over k and l are indicated in Fig. 1.
Equations (15) and (16) imply that the force derived from the
bond order term is linear, thus the bond angle effect and the
dihedral angle effect in the bond order term are two physical
origins for the bending stiffness of the graphene sheet. The
detailed derivation of pσπ

i j( j p) and πdh
i j( j p) can be found in Secs.

2 and 3 of the Appendix, respectively.
Substitute Eqs. (15) and (16) into Eq. (13), the linear part

of the force Fzi can be written as

Fi = cizi + c j

∑
j

z j + cp

∑
p

zp + cq

∑
q

zq + cs

∑
s

zs,

(17)

where the values of ci, c j, cp, cq, cs can be found in the caption
of Fig. 2. Note that due to the strong nonlinear effects in
the REBO potential, e.g., F RA

zm
, this expression is valid only

when the displacement is small. With Eqs. (11) and (17), the
elements of the stiffness matrix can be constructed by the
following expression:

Vmn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ci, n = m,
c j, n = m’s 1st NN,
cp, n = m’s 2nd NN,
cq, n = m’s 3rd NN,
cs, n = m’s 4th NN,
0, otherwise.

(18)
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(a) (b)

FIG. 2. (a) The neighbors of the ith atom in the REBO potential.
(b) The parameters in Eq. (17), where ci, c j, cp, cq, cs are −265.0031,
126.2128, −92.6734, 4.192 44, −2.096 22 J/m2, respectively.

The flexural modes and the corresponding eigenfrequencies
can be calculated numerically by solving the eigenequation

V ϕi = λiϕi, (19)

where {λi, ϕi, i = 1, . . . , N} is the set of eigenvalues and
eigenvectors of V . Then, ϕi will be the ith flexural mode
of the graphene sheet with eigenfrequency ωi = √−λi/m0,
where m0 is the mass of a carbon atom. It should be noted that
Eq. (18) is quite general thus the construction of the stiffness
matrix for resonators with different shapes is straightforward.

IV. FLEXURAL MODES AND SCALING OF THE
FUNDAMENTAL FREQUENCY OF GRAPHENE

RESONATORS

As examples, this formalism has been applied to inves-
tigate the flexural modes of circular and square graphene
resonators, as defined in Fig. 3, where coordinates and the
neighbor list of all the carbon atoms can be easily obtained.
The boundary layers (red empty circles) are chosen so that
up to the fourth-nearest neighbors of the inner atoms (blue
full circles) near the boundary are fixed during the MD
simulations. The inner atoms can move in the force field
derived by the REBO potential. In reality, the interactions
between graphene and the substrate or other materials is
characterized by adhesion energy, which stems from the van

(b)(a)

FIG. 3. The setup of circular (a) and square (b) graphene res-
onators. During the MD simulations, the red atoms close to the
boundary are fixed, and the inner blue atoms are movable. The
boundary layers (red empty circles) are chosen so that up to the
fourth-nearest neighbors of the inner atoms (blue full circles) near
the boundary are motionless.

(a)

0 2 4 6 8
0

100

200

300
(b)

(c)

0 2 4 6 8
0

100

200

300

(d)

FIG. 4. The vibration morphology of the first eight flexural
modes (a), (c) and their corresponding eigenfrequencies (b), (d) for
the circular (a), (b) and square (c), (d) graphene resonators. fi =
ωi/2π . Light gray (yellow) and black (dark blue) in the morphology
plots indicate maximum and minimum values of the flexural modes,
respectively.

der Waals forces or chemical bond between graphene and
the substrate [51]. When the amplitude of the vibration is
small, the graphene resonators can be strongly clamped to the
substrate and the rigid boundary condition is appropriate [52].

The stiffness matrix of the graphene resonators can be
obtained straightforwardly with Eq. (18) and the neighbor list
of the carbon atoms. The flexural modes and their correspond-
ing frequencies can be calculated numerically by solving the
eigenproblem Eq. (19). Figure 4 shows the vibration morphol-
ogy of the first eight flexural modes and their corresponding
eigenfrequencies for the circular and square graphene res-
onators. In this figure, the diameter and side length of the
resonators are 7.24 and 7.01 nm, respectively.

In order to validate the TSO approach, the eigenfrequency
of the first flexural mode for the circular and square graphene
resonators with different sizes has been calculated with both
the TSO and the MD simulations using the LAMMPS pack-
age. The REBO potential is used to model the covalent
bonds between carbon atoms. Verlet algorithm is employed
to integrate the Newton’s equations of motion, and the time
step is set as 1.0 fs. All the carbon atoms are initially placed at
their equilibrium positions, and after an energy minimization
of the system, the graphene resonators are fixed at their
boundary layers as shown in Fig. 3. The whole system is then
equilibrated at a specific temperature (1.0 K) for 100 ps with
canonical ensemble by using Nosé-Hoover thermostat. Then
the thermostat is removed, and the graphene resonators are
actuated by assigning an initial velocity profile along the z
direction obtained from the first flexural mode without any
modification of the position of the carbon atoms [27]. There-
after, all the carbon atoms move freely in the microcanonical
ensemble for 10 ns, and the positions of all the carbon atoms
are collected every ten time steps for further analyses.

The key parameter for the MD simulations is the kinetic
energy fed into the system. Due to the existence of non-
linearity, the resonance frequency of the graphene resonator
is dependent on the amplitude of vibration. As a result, the
initial velocity is set in such a way that the largest relative
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4 6 8 10 12 14
0

50

100

150

(b)

TSO
MD

4 6 8 10 12 14
0

50

100

150

(a)

TSO
MD

FIG. 5. The resonance frequencies of the first flexural mode for
the circular (a) and square (b) graphene resonators with different
sizes. The blue circles and the red asterisks represent the frequencies
that are estimated with the TSO method and the MD simulations,
respectively.

deformations η are approximately equal for all the resonators
with different sizes during the MD simulations, which is
defined as the ratio of the amplitude of vibration in the z
direction to the size of the graphene resonators. In order to
minimize the nonlinear effect, the relative deformation η is
set at around 0.005.

Figure 5 shows the resonance frequencies for the first
flexural mode for the circular and square graphene resonators
with different sizes. The blue circles are estimated with the
TSO method, i.e., the eigenfrequency of the first mode of the
stiffness matrix [Eq. (19)], and the red asterisks are the result
of the MD simulations, which are obtained by applying fast
Fourier transform (FFT) to the trajectory of the center of the
mass of the graphene resonators. It can be seen that the TSO
values of the linear model match the ones estimated with MD
simulations very well, and the resonance frequency decreases
as the size of the graphene resonator increases. Note that, on
one hand, an energy minimization has been performed before
the MD simulations, and the in-plane stress has been relaxed.
On the other hand, the displacements of the carbon atoms are
very small, and the nonlinear effects can be ignored. There-
fore, the resonant frequency is entirely determined by the
bending rigidity that is originated from the bond angle effect
and torsional angle effect of the REBO potential. Under these

4 8 16 32 64 128 256 512

10-2

10-1

100

101

102

(b)

TSO
KPT
PF

4 8 16 32 64 128 256 512
10-2

10-1

100

101

102

(a)

TSO
KPT
PF

FIG. 6. The loglog plot of the resonance frequencies of the
first flexural mode (blue circles) obtained from the stiffness matrix
Eq. (18) for the circular (a) and square (b) graphene resonators with
different sizes. The blue solid lines are fitted with the Kirchhoff’s
plate theory (KPT) Eq. (21), the gray dashed lines are fitted with the
power fitting Eq. (22). The size of the graphene resonators ranges
from 4 nm (624 carbon atoms) to 600 nm (13 million carbon atoms).
The inset in each plot shows the zoom-in region in the linear scale
indicated by red dashed rectangles. Note that, when the system size
is large, the inverse iteration method [53] on sparse matrix has been
applied to solve the resonance frequency of the flexural modes.

conditions, the dynamics of the resonators can be described
by Kirchhoff’s plate theory, that the fundamental frequency of
the clamped circular plate is given by the following relation:

f = 2.06π

√
B

mp

1

D2
, (20)

where B is bending rigidity, mp is the mass per unit area,
and D is the diameter of the plate [54]. For graphene, the
value of mp is 7.865 × 10−7 kg/m2, which is calculated by
considering the mass of 1.99 × 10−26 kg for a single carbon
atom. Figure 6(a) shows the resonance frequencies of the
first flexural mode for the circular graphene resonators in
the log-log scale. The blue circles are the theoretical values
obtained from the stiffness matrix by the inverse-iteration
method, while the solid blue line is the fitting curve with

f = a

D2
, (21)
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and the value of a is 3.52 × 10−6 m2/s. Comparing Eq. (21)
with Eq. (20), we can get the value of the bending rigidity B
from these data, which is 1.45 eV. This value is very close to
the one deduced also from the REBO potential by calculating
the second derivative of the strain energy density with respect
to the curvature [55] and the experimental one [56], which are
1.4 and 1.44 eV, respectively. Figure 6(b) shows the results
for square graphene resonators, which also agree with Kirch-
hoff’s plate theory well. Note that we here mainly focus on the
first flexural mode, the other eigenvalues and eigenvectors can
also been calculated by the inverse iteration method, where the
detailed procedure can be found in Ref. [53]. Experimentally,
the first few vibration modes are imperative due to the easy
excitation of these modes. The Arnoldi based scheme can also
be employed to obtain the first few eigenvalues of the stiffness
matrix [57,58].

In addition, it has been proposed in Ref. [40] that for
double clamped graphene resonators, the resonance frequency
f of the first flexural mode scales with the size L as

f = a

Lb
(22)

and it was found that the value of b is 2.09 [40], which
is a little different from the Kirchhoff’s plate theory of 2
[Eq. (20)]. We have also performed power fitting (PF) with
the TSO data and the values of b are 1.991 and 1.999 for
the circular and square resonators, respectively. This fitting
is depicted in Fig. 6 by the light gray dashed lines. It can be
seen that the KPT fitting and the PF almost coincide with each
other, that from the fitting, it is difficult to distinguish which
one agrees with the data better. However, from Fig. 6(a), when
the system’s size is small, the data deviate from both of the
fitting curves, where the data are a little bit below the curves
[inset of Fig. 6(a)]. This is in agreement with the limitations
of the KPT that it is only valid for plates where its size is
much larger than the thickness. Since the graphene is only
one atom thick, only when it is large enough will it follow
the KPT. From Fig. 6(a), the critical size is around 16 nm for
the circular graphene resonator. However, for square graphene
resonators, the data fit with the KPT well, and also the PF
yields a scaling component of 1.999, which is quite close to 2.

The dynamical behaviors of graphene resonators can be
affected by various factors. Typically the suspended graphene
sheets will appear under stress, which will change the ef-
fective spring constant of the system [19]. This stress can
be tuned by a DC gate voltage [19], or by changing the
temperature due to the thermal expansion and contraction of
the metal electrodes [59]. The electron-phonon coupling may
also have an effect on the dynamics of the resonators. It can
be tuned by doping and biaxial tensile strain, and usually it is
very weak when the strain is small for the pristine graphene
[60]. However, Castro et al. showed that the flexural phonons
are a major source of electron-phonon scattering in suspended
graphene especially when the temperature is higher than 10 K
[61]. In this sense, this is an interesting question that may
need further investigation. In addition, the defect, suspension
distance to the trench, air friction, etc., can also affect the
dynamics of the resonators.

V. CONCLUSION AND DISCUSSION

In this paper, the flexural modes for graphene resonators
have been derived directly from the REBO potential in
LAMMPS for carbon-carbon atomic interactions. First, since
small oscillation and thus linear responses are needed, the re-
duced expression of the REBO potential with small oscillation
assumption has been obtained, and the z-component linearized
force for each atom has been derived. Second, based on
the expression of the z-component force, the stiffness matrix
elements for an atom have been obtained, thus the whole
stiffness matrix for the graphene resonator can be constructed
given the neighbor list of all the carbon atoms. Note that for
graphene resonators with different shapes, only the elements
for the boundary atoms need to be treated separately, thus the
construction of the whole stiffness matrix can be made readily
regardless of the specific shapes. Third, the flexural modes
are nothing but the eigenvectors of the stiffness matrix, and
their eigenfrequencies can be read out from the corresponding
eigenvalues. For large systems, diagonalization of the stiffness
matrix to yield all the flexural modes may be unrealistic, but
the inverse iteration method can be employed to calculate the
flexural modes and their frequencies efficiently. Indeed, the
largest graphene resonator that we have calculated has a length
of 600 nm, with 13 million carbon atoms in total.

As examples, we have calculated the flexural modes and
frequencies of the circular and square graphene resonators
with different sizes. In order to validate these results, the MD
simulations have been performed on the same resonators when
the system size is small, which indicates that the resonance
frequencies estimated with MD simulations match the theo-
retical ones estimated from the TSO method very well. These
results have also been fitted with Kirchhoff’s plate theory,
showing an excellent agreement. From the fitting, it is found
that the value of the bending rigidity is 1.45 eV, which is very
close to the values reported in the literature.

Since the stiffness matrix for graphene resonators with
arbitrary shapes can be obtained readily from our results, we
expect broad applications where eigenfrequencies and flexural
modes are needed in the analysis for the resonators. This
method is general and is applicable not only to the graphene
resonators with different shapes, but also to nanoelectrome-
chanical devices based on other 2D materials with their partic-
ular expressions and parameter values of the empirical atomic
potential, which could find broad applications in both physics
and engineering.
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APPENDIX: DERIVATION OF THE FORCE

The force acting on the ith atom in the z direction can be
written as

Fzi = F RA
zi

+ F b
zi
, (A1)
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where F RA
zi

and F b
zi

are the forces induced by the variation
of bond length and bond order, respectively. The bond length
force F RA

zi
is given by

F RA
zi

= −
∑

j

[
∂V R

i j

∂ri j
+ bi j

∂V A
i j

∂ri j

]
∂ri j

∂zi
, (A2)

and the bond order force F b
zi

can be written as

F b
zi

= −
∑

j

⎡
⎣V A

i j

∂bi j

∂zi
+

∑
p∈ j’s NN

V A
j p

∂b j p

∂zi

⎤
⎦, (A3)

where

bi j( j p) = 1
2 [pi j( j p) + p ji(p j)] + πdh

i j( j p) (A4)

and the summation indices j and p are indicated in Fig. 2.
The first two terms and the third term in Eq. (A4) are related
with the bond angles between adjacent bonds and the torsional
angles, respectively.

1. Bond length force

In order to calculate the bond length force F RA
zi

, the equi-
librium bond length r0 should be estimated accurately in the
first place. For this purpose, the bond order bi j is regarded as
a constant by assuming that all the bond angles and torsional
angles in graphene are in their equilibrium positions. Then r0

can be calculated by

∂Ei j

∂ri j
= 0, (A5)

where Ei j = V R
i j + bi jV A

i j is the bond energy between atoms

i and j. The value of r0 is approximately 1.397 68 Å, which
has been validated by performing an energy minimization of
graphene sheet in LAMMPS.

Expanding Ei j about r0, we obtain

Ei j = a0 + a1(ri j − r0)+a2(ri j−r0)2 + a3(ri j − r0)3 + · · · ,

(A6)
where a0, a1, a2, and a3 are −5.204, 0.000, 23.5191, and
−61.0589, respectively. Substituting Eq. (A6) into Eq. (A2),
we have

F RA
zi

� −
∑

j

[2a2(ri j − r0) + 3a3(ri j − r0)2]
∂ri j

∂zi

�
∑

j

a2

r2
0

(z j − zi )
3 + 3a3

4r3
0

(z j − zi )
5 + · · · , (A7)

where ri j =
√

r2
0 + (z j − zi )2 is taken as the bond length by

assuming that the atoms are constrained in the equilibrium
position in the x and y directions. Obviously, the bond length
force contains only nonlinear terms, which implies that it has
no effect on the bending rigidity.

2. Bond angle part of the bond order force

Now we consider the bond order force which is linear
with respect to the z component of the displacements. It
has two parts, the bond angle part and the torsion angle

part. Figure 1(a) shows the bond angles in graphene lattice.
The pσπ

i j and pσπ
ji are related with bond angles θ jik and θi jl ,

respectively. The derivative of the first term in Eq. (A4) can
be written as

∂ pσπ
i j

∂zm
=

∑
k

∂ pσπ
i j

∂gi(cos θ jik )

∂gi(cos θ jik )

∂ cos θ jik

∂ cos θ jik

∂zm

= −1

2

∑
k

⎡
⎣0.9724 +

∑
k �=i, j

gi(cos θ jik )

⎤
⎦

−3/2

× ∂gi(cos θ jik )

∂ cos θ jik

∂ cos θ jik

∂zm
, (A8)

where m = i, j, k, and the summation index k runs over all
the atoms marked by “k” in Fig. 1(a). For the graphene
sheet, on the hypothesis of small oscillations along the z
direction, all the bond angles θ jik are approximately equal to
2
3π . Substituting the values in Table III into Eq. (A8), we have

∂ pσπ
i j

∂zm
= −0.075 94

∑
k

∂ cos θ jik

∂zm
, (A9)

where

cos θ jik = ri j · rik

|ri j ||rik| . (A10)

If the atoms are constrained in the equilibrium position in the
x and y directions, cos θ jik can be written as

cos θ jik = − 1
2 r2

0 + (zi − z j )(zi − zk )√
r2

0 + (
zi − z j

)2
√

r2
0 + (zi − zk )2

. (A11)

The derivative of cos θ jik can be written as

∂ cos θ jik

∂zi
= 2zi − z j − zk√

r2
0 + (zi − z j )2

√
r2

0 + (zi − zk )2

− cos θ jik

[
zi − z j

r2
0 + (zi − z j )2

+ zi − zk

r2
0 + (zi − zk )2

]
,

(A12)

∂ cos θ jik

∂z j
= zi − zk√

r2
0 + (zi − z j )2

√
r2

0 + (zi − zk )2

− cos θ jik

[
z j − zi

r2
0 + (zi − z j )2

]
, (A13)

and

∂ cos θ jik

∂zk
= zi − z j√

r2
0 + (zi − z j )2

√
r2

0 + (zi − zk )2

− cos θ jik

[
zk − zi

r2
0 + (zi − z j )2

]
. (A14)

195409-8



FLEXURAL MODES OF GRAPHENE RESONATORS DERIVED … PHYSICAL REVIEW B 101, 195409 (2020)

On the hypothesis of small oscillations along the z direction,
|zi − z j | 	 r2

0 and θ jik � 2
3π . As a result, we have

∂ pσπ
i j

∂zm
�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 0.075 94
r2

0

∑
k

(
3zm − 3

2 z j − 3
2 zk

)
, m = i,

− 0.075 94
r2

0

∑
k

(
1
2 zm + zk − 3

2 zi
)
, m = j,

− 0.075 94
r2

0

(
1
2 zm + z j − 3

2 zi
)
, m = k.

(A15)
A similar derivation process can be applied to the bond angles
θi jl ,

∂ pσπ
ji

∂zm
�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 0.075 94
r2

0

∑
l

(
1
2 zm + zl − 3

2 z j
)
, m = i,

− 0.075 94
r2

0

∑
l

(
3zm − 3

2 zi − 3
2 zl

)
, m = j,

− 0.075 94
r2

0

(
1
2 zm + zi − 3

2 z j
)
, m = l ,

(A16)
where the summation runs over all the atoms l in Fig. 1(a).
It is clear that the force derived from the bond angle terms is
linear with respect to the displacement, and is one of the most
important contributions of the bending stiffness.

3. Torsion angle part of the bond order force

The torsion angle ωki jl is the angle between the planes
defined by the vectors rik and ri j , denoted by 1, and that
defined by ri j and r jl , denoted by 2. In Figs. 1(b) and 1(c),

nki j and 
ni jl are the unit normal vectors of the planes 1 and
2, respectively. The 
nki j and 
ni jl are defined as


nki j = r ji × rik

|r ji × rik| ,

and


ni jl = ri j × r jl

|ri j × r jl | ,

respectively. The torsion angle ωki jl is just the angle between
the vectors 
nki j and 
ni jl . On the hypothesis of small oscilla-

tions, we have |r ji × rik| = |ri j × r jl | �
√

3
2 r2

0 .
As shown in Figs. 1(b) and 1(c), there are two kinds

of torsion angles. For the torsion angle of Fig. 1(b), the
expression of sin ωki jl can be written as

sin ωki jl � |�
n| = |
ni jl − 
nki j |

= 2
√

3

3r2
0

|ri j ||r jl + rik| sin〈ri j, r jl + rik〉, (A17)

where |ri j | � r0, r jl + rik � (zk + zl − zi − z j )
z, and
sin〈ri j, r jl + rik〉 � 1 as ri j is approximately perpendicular
to r jl + rik . As a result, we have

sin ωki jl = 2
√

3

3r0
|zi + z j − zk + zl |. (A18)

Similarly, for Fig. 1(c), we have

sin ωki jl = 2
√

3

3r0
|2zi − 2z j − zk + zl |. (A19)

The derivative of πdh
i j is given by

∂πdh
i j

∂zm
= Te

∑
k �=i, j

∑
l �=i, j

∂ sin2 ωki jl

∂zm
, (A20)

where m = i, j, k, l . Substituting Eqs. (A18) and (A19) into
Eq. (A20), we have

∂πdh
i j

∂zm
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

16Te

3r2
0

(
3zm − z j − ∑

k zk
)
, m = i,

− 16Te

3r2
0

(
zi − 3zm + ∑

l zl
)
, m = j,

− 4Te

3r2
0

(
6zi − 2z j − 4zm

)
, m = k,

4Te

3r2
0

(
2zi − 6z j − 4zm

)
, m = l ,

(A21)

where the summation indices k and l run over all the atoms
k and l in Figs. 1(b) and 1(c), respectively. As a result, this
force is also linear, and the dihedral angle’s effect is another
important contribution of the bending stiffness.
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